Loading...

Đề thi học kì 1 môn Toán lớp 8 (Đề 1)

Thứ hai - 26/11/2018 12:14

Đề thi học kì 1 môn Toán lớp 8 (Đề 1) gồm 2 phần trắc nghiệm và tự luận có đáp án kèm theo. Mời các bạn cùng tham khảo.

Loading...

Phần trắc nghiệm (2 điểm)

Câu 1: Giá trị của x thỏa mãn x2 + 16 = 8x là

A. x = 8       B. x = 4       C. x = -8       D. x= -4

Câu 2: Kết quả phép tính: 15 x3y5z : 3 xy2z là

A. 5x2 y3       B. 5xy       C. 3x2y3 D. 5xyz

Câu 3: Kết quả phân tích đa thức -x2 + 4x - 4 là:

A. -(x + 2)2       B. -(x - 2)2       C. (x-2)2       D. (x + 2)2

Câu 4: Mẫu thức chung của 2 phân thức: Đề kiểm tra Toán 8 | Đề thi Toán 8 là:

A. 2(x - 1)2       B. x(x - 1)2       C. 2x(x-1)       D. 2x (x-1)2

Câu 5: Điều kiện xác định của phân thức: Đề kiểm tra Toán 8 | Đề thi Toán 8 là:

A. x≠1/3       B. x≠±1/3       C. x≠-1/3       D. x≠9

Câu 6: Khẳng định nào sau đây là sai:

A. Tứ giác có 2 đường chéo vuông góc với nhau tại trung điểm mỗi đường là hình thoi.

B. Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hình bình hành

C. Hình chữ nhật có 2 đường chéo bằng nhau là hình vuông.

D. Hình chữ nhật có 2 đường chéo vuông góc với nhau là hình vuông.

Câu 7: Cho tứ giác MNPQ. Gọi E, F , G, H lần lượt là trung điểm các cạnh MN, NP, PQ, QM. Tứ giác EFGH là hình thoi nếu 2 đường chéo MP, NQ của tứ giác MNPQ:

Đề kiểm tra Toán 8 | Đề thi Toán 8

A. Bằng nhau

B. Vuông góc

C. Vuông góc với nhau tại trung điểm mỗi đường

D. Cắt nhau tại trung điểm mỗi đường.

Câu 8: Độ dài 2 đường chéo của hình thoi lần lượt là 6 cm và 4 cm. Độ dài cạnh của hình thoi là:

A. 13 cm       B. √13 cm       C. 52 cm       D. √52 cm

Phần tự luận (8 điểm)

Bài 1: (1 điểm) Phân tích thành nhân tử:

a) x2 + 4y2 + 4xy – 16

b) 5x2 - 10xy + 5y2

Bài 2: (2 điểm)

Cho biểu thức Đề kiểm tra Toán 8 | Đề thi Toán 8

a) Tìm điều kiện của x để biểu thức A xác định.

b) Rút gọn A

c) Tính giá trị của A khi x= -1

Bài 4: (1điểm )

Cho a + b = 1. Tính giá trị của các biểu thức sau:

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b).

Bài 5: (4 điểm) Cho tam giác ABC vuông tại A (AB < AC).Gọi I là trung điểm của cạnh BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N.

a) Chứng minh tứ giác AMIN là hình chữ nhật.

b) Gọi D là điểm đối xứng của I qua N. Chứng minh tứ giác ACID là hình thoi.

c) Cho AC = 20cm, BC = 25cm.Tính diện tích ΔABC

d) Đường thẳng BN cắt cạnh DC tại K. Chứng minh: Đề kiểm tra Toán 8 | Đề thi Toán 8

ĐÁP ÁN

Phần trắc nghiệm (2 điểm)

1.B 2.A 3.B 4.D
5.B 6.C 7.A 8.B

Phần tự luận (8 điểm)

Bài 1

a) x2 + 4y2 + 4xy – 16 = (x + 2y)2 -16 = (x + 2y – 4)(x + 2y + 4).

b) 5x2 - 10xy + 5y2 = 5(x2 - 2xy + y2) = 5(x - y)2

Bài 2

Đề kiểm tra Toán 8 | Đề thi Toán 8

a) x2 - 4 ≠ 0 ⇔ (x + 2)(x - 2) ≠ 0

Đề kiểm tra Toán 8 | Đề thi Toán 8

ĐKXĐ: x ≠ - 2 và x ≠ 2

Đề kiểm tra Toán 8 | Đề thi Toán 8

Bài 4: Ta có: a + b = 1

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)3 - 3ab(a + b) + 3ab[(a + b)2 - 2ab] + 6a2 b2 (a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2 b2

= 1 - 3ab + 3ab - 6a2 b2 + 6a2 b2

= 1

Bài 5:

Đề kiểm tra Toán 8 | Đề thi Toán 8

a) Xét tứ giác AMIN có:

∠(MAN) = ∠(ANI) = ∠(IMA) = 90o

⇒ Tứ giác AMIN là hình chữ nhật (có 3 góc vuông).

b) ΔABC vuông có AI là trung tuyến nên AI = IC = BC/2

do đó ΔAIC cân có đường cao IN đồng thời là đường trung tuyến

⇒ NA = NC.

Mặt khác ND = NI (t/c đối xứng) nên ADCI là hình bình hành

Lại có AC ⊥ ID (gt). Do đó ADCI là hình thoi.

c) Ta có: AB2 = BC2 – AC2 (định lí Py-ta-go)

= 252 – 202 ⇒ AB = √225 = 15 (cm)

Vậy SABC = (1/2).AB.AC = (1/2).15.20 = 150 (cm2)

d) Kẻ IH // BK ta có IH là đường trung bình của ΔBKC

⇒ H là trung điểm của CK hay KH = HC (1)

Xét ΔDIH có N là trung điểm của DI, NK // IH (BK // IH)

Do đó K là trung điểm của DH hay DK = KH (2)

Từ (1) và (2) ⇒ DK = KH = HC ⇒ DK/DC= 1/3.

Loading...

 
 Từ khóa: trắc nghiệm
Tổng số điểm của bài viết là: 0 trong 0 đánh giá
Click để đánh giá bài viết

  Ý kiến bạn đọc

  Ẩn/Hiện ý kiến

Mã chống spam   

Bài cùng chuyên mục: Lớp 8

 

Xem tiếp...

Bài viết mới

 

Bài viết cũ

Loading...
XEM NHIỀU TRONG TUẦN