Loading...

Đề thi học kì 1 môn Toán lớp 8 (Đề 3)

Thứ hai - 26/11/2018 12:23

Đề thi học kì 1 môn Toán lớp 8 (Đề 3) có đáp án kèm theo. Mời các bạn cùng tham khảo.

Loading...

Bài 1: (2 điểm)

a) Phân tích nhân tử

i) xy - 6y + 2x - 12

ii) 2x(y - z) + (z - y)(x + y)

b) Tìm x biết: x + 3 = (x + 3)2

Bài 2: (1 điểm) Rút gọn và tính giá trị của biểu thức:

Đề kiểm tra Toán 8 | Đề thi Toán 8

Bài 3: (2 điểm) Cho biểu thức:

Đề kiểm tra Toán 8 | Đề thi Toán 8

a) Tìm điều kiện xác định của biểu thức P.

b) Chứng minh giá trị của P luôn âm với x ≠ ±1

Bài 4: (1 điểm) Chứng minh rằng biểu thức

Đề kiểm tra Toán 8 | Đề thi Toán 8

Bài 5: (4 điểm) Cho tam giác ABC vuông tại A. Gọi M, N lần lượt là trung điểm của hai cạnh AB và BC.

a) Gọi D là điểm đối cứng của A qua N. Chứng minh tứ giác ABCD là hình chữ nhật.

b) Lấy I là trung điểm của cạnh AC và E là điểm đối xứng của N qua I.

Chứng minh tứ giác ANCE là hình thoi.

c) Đường thẳng BC cắt DM và DI lần lượt tại G và G’. Chứng minh BG = CG’.

d) Cho AB = 6cm, AC = 8cm. Tính diện tích ΔDGG’.

ĐÁP ÁN

Bài 1

i) xy - 6y + 2x - 12

= (xy - 6y) + (2x - 12)

= y(x - 6) + 2(x - 6)

= (x - 6)(y + 2)

ii) 2x(y - z) + (z - y)(x + y)

= 2x(y - z) - (y - z)(x + y)

= (y - z)(2x - x - y)

= (y - z)(x - y)

b) x + 3 = (x + 3)2 ⇔ (x + 3)2 - (x + 3) = 0 ⇔ (x + 3)(x + 3 - 1) = 0

⇔ (x + 3)(x + 2) = 0

Đề kiểm tra Toán 8 | Đề thi Toán 8

Vậy x = -3; x = -2

Bài 2: Điều kiện: x ≠ 1; x ≠ 0.

Đề kiểm tra Toán 8 | Đề thi Toán 8

Bài 3

a) Ta có: x4 - 1 = (x2 + 1)(x2-1), trong đó : x2 + 1 > 0, với mọi x.

Vậy điều kiện : x2 – 1 ≠ 0

x2 – 1 = (x – 1)(x + 1) ≠ 0 ⇒ x ≠ ±1

b) Đề kiểm tra Toán 8 | Đề thi Toán 8

Do x2 + 1 > 0 với mọi x nên P < 0 với mọi x ≠ ±1

Bài 4

Đề kiểm tra Toán 8 | Đề thi Toán 8

Do x2≥ 0 ∀ x ≠ ±1 nên Q=x2 + 1 ≥ 1 ∀ x ≠ ±1

Bài 5

Đề kiểm tra Toán 8 | Đề thi Toán 8

a) Ta có: NB = NC (gt); ND = NA (gt)

⇒ Tứ giác ABDC là hình bình hành

có ∠A = 90o (gt) ⇒ ABDC là hình chữ nhật.

b) Ta có: AI = IC (gt); NI = IE (gt)

⇒ AECN là hình bình hành (hai đường chéo cắt nhau tại trung điểm mỗi đường).

mặt khác ΔABC vuông có AN là trung tuyến nên AN = NC = BC/2.

Vậy tứ giác AECN là hình thoi.

c) BN và DM là 2 đường trung tuyến của tam giác ABD; BN và MD giao nhau tại G nên G là trọng tâm tam giác ABD.

Tương tự G’ là trọng tâm của hai tam giác ACD

⇒ BG = BN/3 và CG’ = CN/3 mà BN = CN (gt) ⇒ BG = CG’

d) Ta có: SABC = (1/2).AB.AC = (1/2).6.6 = 24 (cm2)

Lại có: BG = GG’ = CG’ (tính chất trọng tâm)

⇒ SDGB = SDGG' = SDG'C = 1/3 SBCD

(chung đường cao kẻ từ D và đáy bằng nhau)

Mà SBCD = SCBA (vì ΔBCD = ΔCBA (c.c.c))

⇒SDGG' = 24/3 = 8(cm2)

Loading...
 

 
Tổng số điểm của bài viết là: 0 trong 0 đánh giá
Click để đánh giá bài viết

  Ý kiến bạn đọc

  Ẩn/Hiện ý kiến

Mã chống spam   

Bài cùng chuyên mục: Lớp 8

 

Xem tiếp...

Bài viết mới

 

Bài viết cũ

Loading...
XEM NHIỀU TRONG TUẦN