Đề thi cuối học kỳ 2 môn Toán lớp 9 (Đề 1)

Thứ năm - 11/04/2019 11:00
Đề thi cuối học kỳ 2 môn Toán lớp 9 (Đề 1), có đáp án kèm theo. Mời các bạn cùng tham khảo.
I. Trắc nghiệm (2 điểm)

Câu 1: Cho hàm số y = -3x2. Kết luận nào sau đây là đúng :
A. Hàm số trên luôn đồng biến

B. Hàm số trên luôn nghịch biến

C. Hàm số trên đồng biến khi x > 0, nghịch biến khi x < 0

D. Hàm số trên đồng biến khi x < 0, nghịch biến khi x > 0

Câu 2: Cho phương trình bậc hai x2 – 2(m + 1) x + 4m = 0. Phương trình có nghiệm kép khi m bằng:

A. 1         C. Với mọi m

B. –1       D. Một kết quả khác

Câu 3: Cung AB của đường tròn (O; R) có số đo là 60o. Khi đó diện tích hình quạt AOB là:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Câu 4: Tứ giác MNPQ nội tiếp đường tròn khi:

A.∠(MNP) + ∠(NPQ) = 180o

B.∠(MNP) = ∠(MPQ)

C. MNPQ là hình thang cân

D. MNPQ là hình thoi

II. Tự luận (8 điểm)

Bài 1 (2,0 điểm)

1) Tìm điều kiện xác định của biểu thức
​Đề thi hoc ky 2 toan lop 9​

2) Cho biểu thức 
​Đề thi hoc ky 2 toan lop 9​ với x > 0; x ≠ 1

a) Rút gọn biểu thức B

b) Tìm giá trị nhỏ nhất của P = A.B với x > 1

Bài 2 (1,5 điểm) Giải bài toán bằng cách lập phương trình hoặc hệ phương trình

Một tấm bìa hình chữ nhật có chiều dài hơn chiều rộng 3dm. Nếu giảm chiều rộng đi 1dm và tăng chiều dài thêm 1dm thì diện tích tấm bìa là 66 Tính chiều rộng và chiều dài của tấm bìa lúc ban đầu.

Bài 3 (2,0 điểm)

1) Cho phương trình x4 + mx2 - m - 1 = 0(m là tham số)

a) Giải phương trình khi m = 2

b) Tìm giá trị của m để phương trình có 4 nghiệm phân biệt.

2) Trong mặt phẳng tọa độ Oxy cho parabol (P): y = x2 và đường thẳng (d): y = 2x + m (m là tham số).

a) Xác định m để đường thẳng (d) tiếp xúc với parabol (P). Tìm hoành độ tiếp điểm.

b) Tìm giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm A, B nằm về hai phía của trục tung, sao cho diện tích có diện tích gấp hai lần diện tích (M là giao điểm của đường thẳng d với trục tung).

Bài 4 (3,5 điểm) Cho đường tròn (O; R), dây AB. Trên cung lớn AB lấy điểm C sao cho A < CB. Các đường cao AE và BF của tam giác ABC cắt nhau tại I.

a) Chứng minh tứ giác AFEB là tứ giác nội tiếp

b) Chứng minh CF.CB = CE.CA

c) Nếu dây AB có độ dài bằng R√3 , hãy tính số đo của (ACB)

d) Đường tròn ngoại tiếp tam giác CEF cắt đường tròn (O; R) tại điểm thứ hai là K (K khác C). Vẽ đường kính CD của (O; R). Gọi P là trung điểm của AB. Chứng minh rằng ba điểm K, P, D thẳng hàng.

Hướng dẫn giải

Trắc nghiệm (2 điểm)

1.D 2.A 3.B 4.C

Tự luận (8 điểm)

Bài 1

​Đề thi hoc ky 2 toan lop 9​

Biểu thức A xác định khi √x - 1 ≠ 0 ⇔ √x ≠ 1 ⇔ x ≠ 1

​Đề thi hoc ky 2 toan lop 9​

Vậy GTNN của P là 2√3 + 3 đạt được khi x = 4 + 2√3

Bài 2

Gọi chiều dài của tấm bìa là x (x > 3) (dm)

⇒ Chiều rộng của tấm bìa là x – 3 (dm)

Nếu tăng chiều dài 1 dm và giảm chiều rộng 1 dm thì diện tích là 66 dm2 nên ta có phương trình:

(x + 1)(x – 3 – 1) = 66

⇔ (x + 1)(x – 4 ) = 66

⇔ x2 – 3x – 4 – 66 = 0

⇔ x2 – 3x – 70 = 0

Δ = 32 - 4.(-70) = 289 ⇒ √Δ = 17

⇒ Phương trình đã cho có 2 nghiệm

Đề thi hoc ky 2 toan lop 9

Do x > 3 nên x =10

Vậy chiều dài của tấm bìa là 10 dm

Chiều rộng của tấm bìa là 7 dm.

Bài 3

1) x4 + mx2 - m - 1 = 0

a) Khi m = 2, phương trình trở thành: x4 + 2x2 – 3 = 0

Đặt x2 = t (t ≥ 0). Khi đó ta có phương trình: t2 + 2t - 3 = 0

⇒ Phương trình có nghiệm t = 1 và t = -3 (do phương trình có dạng a + b + c = 0)

Do t ≥ 0 nên t = 1 ⇒ x2 = 1 ⇒ x = ±1

b) Đặt x2 = t (t ≥ 0). Khi đó ta có phương trình: t2 – mt – m – 1 = 0 (*)

Δ = m2 - 4(-m - 1) = m2 + 4m + 4 = (m + 2)2

Phương trình đã cho có 4 nghiệm phân biệt khi và chỉ khi phương trình (*) có 2 nghiệm dương phân biệt

2) parabol (P): y = x2 ; đường thẳng (d): y = 2x + m (m là tham số).

a) phương trình hoành độ giao điểm của (P) và (d) là:

x2 = 2x + m ⇔ x2 - 2x - m = 0

Δ'= 1 + m

(d) tiếp xúc với (P) khi phương trình hoành độ giao điểm có duy nhất 1 nghiệm

⇔ Δ'= 1 + m = 0 ⇔ m = -1

Khi đó hoành độ giao điểm là x = 1

b) (d) cắt (P) tại 2 điểm A, B phân biệt nằm về 2 phía của trục tung khi và chỉ khi

Đề thi hoc ky 2 toan lop 9

Khi đó 2 nghiệm của phương trình là: 
​Đề thi hoc ky 2 toan lop 9​ 

​Đề thi hoc ky 2 toan lop 9​

Kẻ BB' ⊥ OM ; AA' ⊥ OM

​Đề thi hoc ky 2 toan lop 9​

Ta có:

SAOM = 1/2 AA'.OM ; SBOM = 1/2 BB'.OM

Theo bài ra:

​Đề thi hoc ky 2 toan lop 9​

Do m > 0 nên m = 8

Vậy với m = 8 thì thỏa mãn điều kiện đề bài.

Bài 4

​Đề thi hoc ky 2 toan lop 9​

a) Xét tứ giác AEFB có:

∠(AFB) = 90o ( AF là đường cao)

∠(AEB) = 90o ( BE là đường cao)

⇒ 2 đỉnh E và F cùng nhìn cạnh AB dưới 1 góc bằng nhau

⇒ AEFB là tứ giác nội tiếp.

b) Xét ΔBEC và ΔAFC có:

∠(BCA) là góc chung

∠(BEC) = ∠(AFC) = 90 o

⇒ ΔBEC ∼ ΔAFC

​Đề thi hoc ky 2 toan lop 9​

c) Gọi P là trung điểm của AB

Do tam giác OAB cân tại O nên OP ⊥ AB

Tam giác OAP vuông tại P có:

​Đề thi hoc ky 2 toan lop 9​

⇒ Tứ giác CEIF là tứ giác nội tiếp và CI là đường kính đường tròn ngoại tiếp tứ giác CEIF

Ta có: IK ⊥ KC ( góc nội tiếp chắn nửa đường tròn ngoại tiếp tứ giác CEIF)

DK ⊥ KC (góc nội tiếp chắn nửa đường tròn (O)

⇒ D; I; K thẳng hàng (1)

Ta có:

DB ⊥ BC (góc nội tiếp chắn nửa đường tròn (O)

AI ⊥ BC ( AI là đường cao của tam giác ABC)

⇒ AI // BD

DA ⊥ BA(góc nội tiếp chắn nửa đường tròn (O)

BI ⊥ BA ( BI là đường cao của tam giác ABC)

⇒ AD // BI

Xét tứ giác ADBI có: AI // BD và AD // BI

⇒ ADBI là hình bình hành

Do P là trung điểm của AB ⇒ P là trung điểm của DI

Hay D; P; I thẳng hàng (2)

Từ (1) và (2) ⇒ D; P; K thẳng hàng.

  Ý kiến bạn đọc

THÀNH VIÊN

Hãy đăng nhập thành viên để trải nghiệm đầy đủ các tiện ích trên site
Kênh Bóng đá trực tiếp hôm nay miễn phí
Kênh
90Phut TV full HD
leo88 ⇔ hb 88 ⇔ go88 ⇔ u888

https://go88live.net/ ⇔ SHBET
đá gà net88 ⇔ U888 ⇔ BET88 ⇔ SHBET
link xem truc tiep bong da xoilac tv ⇔ https://104.248.99.177/
xem bóng đá cà khịa tv trực tuyến hôm nay
78win ⇔ ABC8 ⇔ hi88 ⇔ qq88
33 win ⇔ 789BET ⇔ bk8 đăng nhập
789BET ⇔ BJ88 ⇔ 789bet ⇔ hitclub
Kubet ⇔ QQ88 ⇔ qq 88
https://789betcom0.com/ ⇔ https://hi88.baby/
OK365 ⇔ https://98win.care/ ⇔ sunwin
QQ88 ⇔ leo88 login ⇔ https://88clbu.net/
789club ⇔ F168 ⇔ 8kbet ⇔ OKVIP
hi88 ⇔ BJ88 ⇔ 123b ⇔ sunwin
https://789club64.com/ ⇔ https://23win.build/
NOHU90 ⇔ 18win ⇔ https://fun88.social/
J88 ⇔ 8kbet ⇔ 33win ⇔ QQ88
789 club ⇔ hi88 ⇔ THABET
https://go88so.net/
8kbet ⇔ https://789club63.com/
https://king88aff.com/ ⇔ hi88 ⇔ 33WIN
https://0fun88.com/ ⇔ New88
https://qq88.fun/ ⇔ http://mu88.wine/
fun88 ⇔ 500ae ⇔ nhà cái net88
8kbet ⇔ s666 ⇔ https://kubetvn88.com/
https://8kbetwin.com/ ⇔ https://uk88.rocks
https://8xbet68.net/ ⇔ https://789bet188.com/
https://shbetb0.com/ ⇔ https://hello8880.net/
sunwin ⇔ ABC88 ⇔ hi88 ⇔ qh88 com
jun 88 ⇔ f168 ⇔ https://qq88.marketing/
F168 ⇔ new88 ⇔ LUCK8 ⇔ 78win
https://mb66az.com/ ⇔ https://789bet.green/
Link vào NEW88 ⇔ https://789club24.com/
https://33win103.com/ ⇔ Rikvip
https://888bz.vip ⇔ https://new88.today/
https://33win102.com/ ⇔ https://500ae.is/
https://33win100.com/ ⇔ https://ok365com.ink/
https://betvisa8.net/ ⇔ https://hi88.report/
https://hi88.tours/ ⇔ https://hubetu.com/
U888 ⇔ https://hi88.garden/
https://789bet188.us/ ⇔ https://hello880.net/
https://789club60.com/ ⇔ https://betvisacom2.com/
shbet ⇔ cwin ⇔ 68gamebai
qh88 đăng nhập ⇔ https://789club24.com/
SHBET ⇔ 33win ⇔ 8xbet com
sunwin ⇔ KUBET ⇔ BAY789
https://go88club13.com/https://789bet188.today/
https://bk8link2.com/ ⇔ https://bk8link3.com/
https://789bet188.xyz/ ⇔ https://jun88pro.club/
https://33win101.com/ ⇔ SHBET
https://u888ny.com/ ⇔ https://hi88.gives/
https://jofinch.london/ ⇔ J88
https://win55.sh/ ⇔ https://789bet188.pro/
https://king88.select/ ⇔ https://789bet188.cloud/
https://ww88.supply/ ⇔ https://nohu90m.net/
https://f8betlv.com/ ⇔ https://bj8884.com/
https://abc8.education/
Nhà cái SHBET
https://789bet188.info/ ⇔ https://789bet188.live/
https://789bet188.online/ ⇔ https://789bet188.co/
https://789bet188.tech/ ⇔ https://789bet188.biz/
https://789bet188.club/ ⇔ https://789bet188.vip/
https://789bet188.site/ ⇔ https://789bet.asia/
https://new8818.net/ ⇔ https://new8818.org/
https://new8818.me/ ⇔ https://new8818.xyz/
https://new8818.pro/ ⇔ https://new8818.cloud/
https://new8818.info/ ⇔ https://new8818.us/
https://new8818.live/ ⇔ https://new8818.online/
https://new8818.co/ ⇔ https://new8818.today/
https://new8818.biz/ ⇔ https://new8818.club/
https://new8818.vip/ ⇔ https://new8818.site/
https://new8818.ink/ ⇔ https://ahihi88.host/
https://hi8818.xyz/ ⇔ https://hi8818.us/
https://hi8818.blog/ ⇔ https://hi8818.online/
https://hi8818.site/ ⇔ https://hi8818.ink/
https://hi8818.cloud/ ⇔ https://hi8818.me/
https://shbet188.org/ ⇔ https://shbet188.pro/
https://shbet188.cloud/ ⇔ https://shbet188.ink/
https://shbet288.store/ ⇔ https://shbet288.today/
https://shbet288.tech/ ⇔ https://shbet188.xyz/
https://shbet188.us/ ⇔ https://shbet188.shop/
https://kubet288.com/ ⇔ https://kubet188.mobi/
https://kubet188.dev/ ⇔ https://kubet288.xyz/
https://kubet288.pro/ ⇔ https://kubet288.cloud/
https://jun8818.org/ ⇔ https://jun8818.net/
https://jun8818.me/ ⇔ https://jun8818.xyz/
https://jun8818.pro/ ⇔ https://jun8818.cloud/
https://jun8818.info/ ⇔ https://jun8818.us/
https://jun8818.live/ ⇔ https://jun8818.shop/
https://8kbet25.com/ ⇔ https://789win.navy/
https://loteriadeboyaca.com.co/
https://f8bet288.com/ ⇔ https://f8bet288.org/
https://f8bet288.net/ ⇔ https://f8bet288.me/
https://f8bet288.xyz/ ⇔ https://f8bet288.pro/
https://f8bet288.cloud/ ⇔ https://f8bet288.info/
https://f8bet288.us/ ⇔ https://f8bet288.live/
https://f8bet288.online/ ⇔ https://f8bet288.co/
https://f8bet288.today/ ⇔ https://f8bet288.biz/
Bạn đã không sử dụng Site, Bấm vào đây để duy trì trạng thái đăng nhập. Thời gian chờ: 60 giây