Giải Toán 8 sách Kết nối Tri Thức, bài 4: Phép nhân đa thức

Thứ ba - 10/10/2023 05:15
Giải Toán 8 sách Kết nối Tri Thức, bài 4: Phép nhân đa thức - Trang 19, 20, 21.

 1. Nhân đơn thức với đa thức

Luyện tập 1 trang 19: Nhân hai đơn thức:
a) 3x2 và 2x3;
b) –xy và 4z3;
c) 6xy3 và –0,5x2.
Giải:
a) 3x2 . 2x3 = (3. 2)(x2 . x3) = 6x5;
b) –xy . 4z3 = –4xyz3;
c) 6xy3 . (–0,5x2) = [6 . (–0,5)] (x . x2) y3 = –3x3y3

Hoạt động 1 trang 19: Hãy nhớ lại quy tắc nhân đơn thức với đa thức trong trường hợp chúng có một biến bằng cách thực hiện phép nhân (5x2) . (3x2 – x – 4).
Giải:
Ta có (5x2) . (3x2 – x – 4) = 5x2 . 3x2 – 5x2 . x – 5x2 . 4
= 15x4 – 5x3 – 20x2.

Hoạt động 2 trang 20: Bằng cách tương tự, hãy làm phép nhân (5x2y) . (3x2y – xy – 4y).
Giải:
Ta có (5x2y) . (3x2y – xy – 4y)
= 5x2y . 3x2y – 5x2y . xy – 5x2y . 4y
= (5.3)(x2.x2)(y.y) – 5(x2.x)(y.y) – (5.4)x2(y.y)
= 15x4y2 – 5x3y2 – 20x2y2.

Luyện tập 2 trang 20: Làm tính nhân:
a) (xy) . (x2 + xy – y2);
b) (xy + yz + zx) . (–xyz).
Giải:
a) (xy) . (x2 + xy – y2) = xy . x2 + xy . xy – xy . y2
= x3y + x2y2 – xy3.
b) (xy + yz + zx) . (–xyz) = xy . (–xyz) + yz . (–xyz) + zx . (–xyz)
= –x2y2z – xy2z2 – x2yz2.

Vận dụng trang 20: Rút gọn biểu thức x3(x + y) – x(x3 + y3).
Giải:
Ta có x3(x + y) – x(x3 + y3) = x3 . x + x3 . y – x . x3 – x . y3
= x4 + x3y – x4 – xy3 = x3y – xy3.
 

2. Nhân đa thức với đa thức

Hoạt động 3 trang 20: Hãy nhớ lại quy tắc nhân hai đa thức một biến bằng cách thực hiện phép nhân: (2x + 3) . (x2 – 5x + 4).
Giải:
Ta có (2x + 3) . (x2 – 5x + 4)
= 2x . x2 – 2x . 5x + 2x . 4 + 3 . x2 – 3 . 5x + 3 . 4
= 2x3 – 10x2 + 8x + 3x2 – 15x + 12
= 2x3 + (3x2 – 10x2) + (8x – 15x) + 12
= 2x3 – 7x2 – 7x + 12.

Hoạt động 4 trang 20: Bằng cách tương tự, hãy thử làm phép nhân  (2x + 3y) . (x2 – 5xy + 4y2).
Giải:
Ta có (2x + 3y) . (x2 – 5xy + 4y2)
= 2x . x2 – 2x . 5xy + 2x . 4y2 + 3y . x2 – 3y . 5xy + 3y . 4y2
= 2x3 – 10x2y + 8xy2 + 3x2y – 15xy2 + 12y3
= 2x3 + 12y3 + (3x2y – 10x2y) + (8xy2 – 15xy2)
= 2x3 + 12y3 – 7x2y – 7xy2.

Luyện tập 3 trang 21: Thực hiện phép nhân:
a) (2x + y)(4x2 – 2xy + y2);
b) (x2y2 – 3)(3 + x2y2).
Giải:
a) (2x + y)(4x2 – 2xy + y2)
= 2x . 4x2 – 2x . 2xy + 2x . y2 + y . 4x2 – y . 2xy + y . y2
= 8x3 – 4x2y + 2xy2 + 4x2y – 2xy2 + y3
= 8x3 + (4x2y – 4x2y) + (2xy2 – 2xy2) + y3
= 8x3 + y3.

b) (x2y2 – 3)(3 + x2y2) = x2y2 . 3 + x2y2 . x2y2 – 3 . 3 – 3 . x2y2
= 3x2y2 + x4y4 – 9 – 3x2y2 = x4y4 – 9.

Thử thách nhỏ trang 21: Xét biểu thức đại số với hai biến k và m sau: P = (2k – 3)(3m – 2) – (3k – 2)(2m – 3).
a) Rút gọn biểu thức P.
b) Chứng minh rằng tại mọi giá trị nguyên của k và m, giá trị của biểu thức P luôn là một số nguyên chia hết cho 5.

Giải:
a) P = (2k – 3)(3m – 2) – (3k – 2)(2m – 3)
= (6km – 9m – 4k + 6) – (6km – 4m – 9k + 6)
= 6km – 9m – 4k + 6 – 6km + 4m + 9k – 6
= (6km – 6km) + (4m – 9m) + (9k – 4k) + (6 – 6) = 5k – 5m.

b) Ta thấy P = 5k – 5m = 5(k – m)
Vì 5 ⋮ 5 nên 5(k – m) ⋮ 5
Do đó, tại mọi giá trị nguyên của k và m, giá trị của biểu thức P luôn là một số nguyên chia hết cho 5.
 

3. Giải Bài tập trang 21

Bài 1.24: Nhân hai đơn thức:
a) 5x2y và 2xy2;
b)  xy và 8x3y2;
c) 1,5xy2z3 và 2x3y2z.

Giải:
a) 5x2y . 2xy2 = (5. 2)(x2 . x)(y . y2) = 10x3y3;
b)  xy . 8x3y2 =   = 6x4y3;
c) 1,5xy2z3 . 2x3y2z = (1,5 . 2)(x . x3)(y2 . y2)(z . z3) = 3x4y4z4.

Bài 1.25: Tìm tích của đơn thức với đa thức:
giai toan 8 sach kntt bai 4 cau 1 25
Giải:
giai toan 8 sach kntt bai 4 cau 1 25a

Bài 1.26: Rút gọn biểu thức x(x2 – y) – x2(x + y) + xy(x – 1).
Giải:
Ta có x(x2 – y) – x2(x + y) + xy(x – 1)
= x . x2 – x . y – x2 . x – x2 . y + xy . x – xy . 1
= x3 – xy – x3 – x2y + x2y – xy
= (x3 – x3) + (x2y – x2y) – (xy + xy) = –2xy.

Bài 1.27: Làm tính nhân:
giai toan 8 sach kntt bai 4 cau 1 27
Giải:
giai toan 8 sach kntt bai 4 cau 1 27a

Bài 1.28: Rút gọn biểu thức sau để thấy rằng giá trị của nó không phụ thuộc vào giá trị của  biến: (x - 5)(2x + 3) - 2x(x - 3) + x + 7
Giải:
Ta có (x – 5)(2x + 3) – 2x(x – 3) + x + 7
= x . 2x + x . 3 – 5 . 2x – 5 . 3 – 2x . x + 2x . 3 + x + 7
= 2x2 + 3x – 10x – 15 – 2x2 + 6x + x + 7
= (2x2 – 2x2) + (3x – 10x + 6x + x) + (7 – 15)
= –8.
Vậy giá trị của biểu thức không phụ thuộc vào giá trị của biến x.

Bài 1.29: Chứng minh đẳng thức sau: (2x + y)(2x2 + xy – y2) = (2x – y)(2x2 + 3xy + y2).
Giải:
Ta có:
• (2x + y)(2x2 + xy – y2)
= 2x . 2x2 + 2x . xy – 2x . y2 + y . 2x2 + y . xy – y . y2
= 4x3 + 2x2y – 2xy2 + 2x2y + xy2 – y3
= 4x3 + (2x2y + 2x2y) + (xy2 – 2xy2) – y3
= 4x3 + 4x2y – xy2 – y3.
• (2x – y)(2x2 + 3xy + y2)
= 2x . 2x2 + 2x . 3xy + 2x . y2 – y . 2x2 – y . 3xy – y . y2
= 4x3 + 6x2y + 2xy2 – 2x2y – 3xy2 – y3
= 4x3 + (6x2y – 2x2y) + (2xy2 – 3xy2) – y3
= 4x3 + 4x2y – xy2 – y3.
Do đó (2x + y)(2x2 + xy – y2) = (2x – y)(2x2 + 3xy + y2) = 4x3 + 4x2y – xy2 – y3.
Vậy (2x + y)(2x2 + xy – y2) = (2x – y)(2x2 + 3xy + y2).

  Ý kiến bạn đọc

THÀNH VIÊN

Hãy đăng nhập thành viên để trải nghiệm đầy đủ các tiện ích trên site
Kênh Bóng đá trực tiếp hôm nay miễn phí
Kênh
90Phut TV full HD ⇔ 32win
RR88 ⇔ 79king ⇔ bk8 ⇔ 123b

78win ⇔ SV388 ⇔ cakhiatv ⇔ bet88
789f ⇔ Cakhia TV ⇔ rikvip ⇔ 8x bet
kết quả bóng đá ⇔ keonhacai ⇔ okvip
b52club ⇔ Kkwin ⇔ ko66 ⇔ Link MB66
https://88betcom.pro/ ⇔ 8x bet ⇔ 33win
789BET ⇔ shbet ⇔ 32 win ⇔ RR88
j88 ⇔ 789win link ⇔ hi88 ⇔ b52 club
https://789betcom0.com/ ⇔ https://hi88.baby/
TK88 ⇔ đá gà ⇔ luongsontv ⇔ SHBET
hi88.biz ⇔ qq88 ⇔ i9 Bet ⇔ go88
 ⇔ 789F ⇔ j88 ⇔ 789win ⇔ 
 ⇔ 789Win ⇔ HUBET ⇔ 
https://789bett1.blog/ ⇔ bj88 ⇔ uu88
F168 ⇔ bet88 ⇔ QQ88 ⇔ bk8 ⇔ bk8
MB66 ⇔ iwinclub ⇔ MB66 ⇔ net88
KING88 ⇔ soc88 ⇔ https://j88t3.com/
https://hi88.gives/ ⇔ 23win ⇔ 8kbet
789F ⇔ hi88 ⇔ https://fun88.social/
https://qq88z.net/ ⇔ https://hubet3d.com/
https://qq88.fun/ ⇔ f168 ⇔ HUBET
 ⇔ SHBET ⇔ keo nha cai ⇔ bl-555.site
https://bshbet.com/ ⇔ https://uk88.rocks
MM88 ⇔ 789F ⇔ 88AA ⇔ 98win
https://luongson117.tv/ ⇔ https://hello8880.net/
xin 88 ⇔ 78Win ⇔ https://king88aff.com
red88.com ⇔ 32win ⇔ Kuwin
S666 ⇔ w388 ⇔ sv388 ⇔ 23win
https://ww88.supply ⇔ https://f168.com.co/
sin88.com ⇔ https://789club24.com/
https://33win103.com/ ⇔ https://f168.group/
https://33win102.com/ ⇔ https://789p.co.com/
https://33win100.com/ ⇔ https://hi88.tours/
https://myeat.net/ ⇔ https://hi88.report/
https://58win1.info/ ⇔ https://f168.giving/
https://new88c.co/ ⇔ https://hello880.net/
https://789club60.com/ ⇔ 789WIN
https://f168.dad/ ⇔ E2BET ⇔ f168 ⇔ f168
 ⇔ https://789club24.com/ ⇔ 
King 88 ⇔ 8xbet ⇔ 7m ⇔ j88 ⇔ EV88
 ⇔ KUBET ⇔ 99OK ⇔ RR88
88i ⇔  ⇔ 33win ⇔ 
https://33win101.com/ ⇔ SHBET ⇔ 
five88.com ⇔ https://shbet.gg/ ⇔ SHBET
https://33winpro.me/ ⇔ https://23win.build
alo789 ⇔ hubet ⇔ UU88 ⇔ TG88
https://23win.men/ ⇔ nhà cái 8Kbet
https://pg88.ca/ ⇔ https://789win.voyage/
https://u888.prof/ ⇔ https://ww88i.club/
https://hi88.voyage/ ⇔ https://bk8co.net/
cakhiatv ⇔ https://23wincom.info
https://hi88o.com/ ⇔ https://f168.law/
https://88bett.vip/ ⇔ https://j88.ventures/
https://rcc.eu.com/ ⇔ https://j88com.limited/
New88 ⇔ https://j88.now/ ⇔ hi88
kubet ⇔ Okking ⇔ https://33win.software/
https://ww88star.com/ ⇔ vankhanhtv ⇔ ww88
https://88vvcom.net/ ⇔ 
bong88 ⇔ j88 ⇔ j88 ⇔ sunwin ⇔ sunwin
 ⇔  ⇔ 888b ⇔  ⇔ go 88
 ⇔  ⇔ QQ88
hi88 ⇔ 79King ⇔ kubet ⇔ 8kbet
7MCN ⇔ Keonhacai55.ws ⇔ RR88
789win ⇔ https://nhacaiuytin.garden/
https://xx88.ink/ ⇔ https://bk88vn.net/
https://23win.kim/ ⇔ https://69vn.co.in/
tỷ lệ kèo nhà cái hôm nay ⇔ King88 link mới
nhà cái UU88 ⇔ https://qq88.markets/
https://j88ss.com ⇔ https://qq88.studio/
888B ⇔ GK88 ⇔ nổ hũ đổi thưởng
https://mm88.blue/ ⇔ trực tiếp bóng đá
Hay 88 ⇔ https://rr882.net/ ⇔ King88
https://789winlem.com/ ⇔ https://cakhiatv88.net/
https://shbet.is/ ⇔ https://13win.london/
https://789win.fund/ ⇔ https://nhacaiuytinso1.net/
nohu ⇔ https://abcvip.ru.com/ ⇔ RR88
https://king88.international/ ⇔ 33win ⇔ 98WIN
https://qq88.racing/ ⇔ https://j88uk.com
https://hubest.co/ ⇔ https://23win.solar/
https://muranoglass-shop.cn.com/ ⇔ J88
soi kèo nhà cái ⇔ https://king88.giving/
https://bet88.ventures/ ⇔ trực tiếp bóng đá
https://king88clb.com ⇔ BJ88 ⇔ KUBET
https://sh-bet.com/ ⇔ 8xbet app ⇔ King 88
https://32win.vc/ ⇔ 88bet ⇔ PG88 ⇔ PG88
EE88 ⇔ B52Club ⇔ B52 Club ⇔ HB88
HB88 ⇔ Vin777 ⇔ SV388 ⇔ QQ88 ⇔ 32win
https://mm88.casino/ ⇔ https://luck8.world/
23WIN ⇔ bubet ⇔ https://u888lm.com/
Bạn đã không sử dụng Site, Bấm vào đây để duy trì trạng thái đăng nhập. Thời gian chờ: 60 giây