Giải Toán 8 sách Kết nối Tri Thức, bài 4: Phép nhân đa thức

Thứ ba - 10/10/2023 05:15
Giải Toán 8 sách Kết nối Tri Thức, bài 4: Phép nhân đa thức - Trang 19, 20, 21.

 1. Nhân đơn thức với đa thức

Luyện tập 1 trang 19: Nhân hai đơn thức:
a) 3x2 và 2x3;
b) –xy và 4z3;
c) 6xy3 và –0,5x2.
Giải:
a) 3x2 . 2x3 = (3. 2)(x2 . x3) = 6x5;
b) –xy . 4z3 = –4xyz3;
c) 6xy3 . (–0,5x2) = [6 . (–0,5)] (x . x2) y3 = –3x3y3

Hoạt động 1 trang 19: Hãy nhớ lại quy tắc nhân đơn thức với đa thức trong trường hợp chúng có một biến bằng cách thực hiện phép nhân (5x2) . (3x2 – x – 4).
Giải:
Ta có (5x2) . (3x2 – x – 4) = 5x2 . 3x2 – 5x2 . x – 5x2 . 4
= 15x4 – 5x3 – 20x2.

Hoạt động 2 trang 20: Bằng cách tương tự, hãy làm phép nhân (5x2y) . (3x2y – xy – 4y).
Giải:
Ta có (5x2y) . (3x2y – xy – 4y)
= 5x2y . 3x2y – 5x2y . xy – 5x2y . 4y
= (5.3)(x2.x2)(y.y) – 5(x2.x)(y.y) – (5.4)x2(y.y)
= 15x4y2 – 5x3y2 – 20x2y2.

Luyện tập 2 trang 20: Làm tính nhân:
a) (xy) . (x2 + xy – y2);
b) (xy + yz + zx) . (–xyz).
Giải:
a) (xy) . (x2 + xy – y2) = xy . x2 + xy . xy – xy . y2
= x3y + x2y2 – xy3.
b) (xy + yz + zx) . (–xyz) = xy . (–xyz) + yz . (–xyz) + zx . (–xyz)
= –x2y2z – xy2z2 – x2yz2.

Vận dụng trang 20: Rút gọn biểu thức x3(x + y) – x(x3 + y3).
Giải:
Ta có x3(x + y) – x(x3 + y3) = x3 . x + x3 . y – x . x3 – x . y3
= x4 + x3y – x4 – xy3 = x3y – xy3.
 

2. Nhân đa thức với đa thức

Hoạt động 3 trang 20: Hãy nhớ lại quy tắc nhân hai đa thức một biến bằng cách thực hiện phép nhân: (2x + 3) . (x2 – 5x + 4).
Giải:
Ta có (2x + 3) . (x2 – 5x + 4)
= 2x . x2 – 2x . 5x + 2x . 4 + 3 . x2 – 3 . 5x + 3 . 4
= 2x3 – 10x2 + 8x + 3x2 – 15x + 12
= 2x3 + (3x2 – 10x2) + (8x – 15x) + 12
= 2x3 – 7x2 – 7x + 12.

Hoạt động 4 trang 20: Bằng cách tương tự, hãy thử làm phép nhân  (2x + 3y) . (x2 – 5xy + 4y2).
Giải:
Ta có (2x + 3y) . (x2 – 5xy + 4y2)
= 2x . x2 – 2x . 5xy + 2x . 4y2 + 3y . x2 – 3y . 5xy + 3y . 4y2
= 2x3 – 10x2y + 8xy2 + 3x2y – 15xy2 + 12y3
= 2x3 + 12y3 + (3x2y – 10x2y) + (8xy2 – 15xy2)
= 2x3 + 12y3 – 7x2y – 7xy2.

Luyện tập 3 trang 21: Thực hiện phép nhân:
a) (2x + y)(4x2 – 2xy + y2);
b) (x2y2 – 3)(3 + x2y2).
Giải:
a) (2x + y)(4x2 – 2xy + y2)
= 2x . 4x2 – 2x . 2xy + 2x . y2 + y . 4x2 – y . 2xy + y . y2
= 8x3 – 4x2y + 2xy2 + 4x2y – 2xy2 + y3
= 8x3 + (4x2y – 4x2y) + (2xy2 – 2xy2) + y3
= 8x3 + y3.

b) (x2y2 – 3)(3 + x2y2) = x2y2 . 3 + x2y2 . x2y2 – 3 . 3 – 3 . x2y2
= 3x2y2 + x4y4 – 9 – 3x2y2 = x4y4 – 9.

Thử thách nhỏ trang 21: Xét biểu thức đại số với hai biến k và m sau: P = (2k – 3)(3m – 2) – (3k – 2)(2m – 3).
a) Rút gọn biểu thức P.
b) Chứng minh rằng tại mọi giá trị nguyên của k và m, giá trị của biểu thức P luôn là một số nguyên chia hết cho 5.

Giải:
a) P = (2k – 3)(3m – 2) – (3k – 2)(2m – 3)
= (6km – 9m – 4k + 6) – (6km – 4m – 9k + 6)
= 6km – 9m – 4k + 6 – 6km + 4m + 9k – 6
= (6km – 6km) + (4m – 9m) + (9k – 4k) + (6 – 6) = 5k – 5m.

b) Ta thấy P = 5k – 5m = 5(k – m)
Vì 5 ⋮ 5 nên 5(k – m) ⋮ 5
Do đó, tại mọi giá trị nguyên của k và m, giá trị của biểu thức P luôn là một số nguyên chia hết cho 5.
 

3. Giải Bài tập trang 21

Bài 1.24: Nhân hai đơn thức:
a) 5x2y và 2xy2;
b)  xy và 8x3y2;
c) 1,5xy2z3 và 2x3y2z.

Giải:
a) 5x2y . 2xy2 = (5. 2)(x2 . x)(y . y2) = 10x3y3;
b)  xy . 8x3y2 =   = 6x4y3;
c) 1,5xy2z3 . 2x3y2z = (1,5 . 2)(x . x3)(y2 . y2)(z . z3) = 3x4y4z4.

Bài 1.25: Tìm tích của đơn thức với đa thức:
giai toan 8 sach kntt bai 4 cau 1 25
Giải:
giai toan 8 sach kntt bai 4 cau 1 25a

Bài 1.26: Rút gọn biểu thức x(x2 – y) – x2(x + y) + xy(x – 1).
Giải:
Ta có x(x2 – y) – x2(x + y) + xy(x – 1)
= x . x2 – x . y – x2 . x – x2 . y + xy . x – xy . 1
= x3 – xy – x3 – x2y + x2y – xy
= (x3 – x3) + (x2y – x2y) – (xy + xy) = –2xy.

Bài 1.27: Làm tính nhân:
giai toan 8 sach kntt bai 4 cau 1 27
Giải:
giai toan 8 sach kntt bai 4 cau 1 27a

Bài 1.28: Rút gọn biểu thức sau để thấy rằng giá trị của nó không phụ thuộc vào giá trị của  biến: (x - 5)(2x + 3) - 2x(x - 3) + x + 7
Giải:
Ta có (x – 5)(2x + 3) – 2x(x – 3) + x + 7
= x . 2x + x . 3 – 5 . 2x – 5 . 3 – 2x . x + 2x . 3 + x + 7
= 2x2 + 3x – 10x – 15 – 2x2 + 6x + x + 7
= (2x2 – 2x2) + (3x – 10x + 6x + x) + (7 – 15)
= –8.
Vậy giá trị của biểu thức không phụ thuộc vào giá trị của biến x.

Bài 1.29: Chứng minh đẳng thức sau: (2x + y)(2x2 + xy – y2) = (2x – y)(2x2 + 3xy + y2).
Giải:
Ta có:
• (2x + y)(2x2 + xy – y2)
= 2x . 2x2 + 2x . xy – 2x . y2 + y . 2x2 + y . xy – y . y2
= 4x3 + 2x2y – 2xy2 + 2x2y + xy2 – y3
= 4x3 + (2x2y + 2x2y) + (xy2 – 2xy2) – y3
= 4x3 + 4x2y – xy2 – y3.
• (2x – y)(2x2 + 3xy + y2)
= 2x . 2x2 + 2x . 3xy + 2x . y2 – y . 2x2 – y . 3xy – y . y2
= 4x3 + 6x2y + 2xy2 – 2x2y – 3xy2 – y3
= 4x3 + (6x2y – 2x2y) + (2xy2 – 3xy2) – y3
= 4x3 + 4x2y – xy2 – y3.
Do đó (2x + y)(2x2 + xy – y2) = (2x – y)(2x2 + 3xy + y2) = 4x3 + 4x2y – xy2 – y3.
Vậy (2x + y)(2x2 + xy – y2) = (2x – y)(2x2 + 3xy + y2).

  Ý kiến bạn đọc

THÀNH VIÊN

Hãy đăng nhập thành viên để trải nghiệm đầy đủ các tiện ích trên site
Kênh Bóng đá trực tiếp hôm nay miễn phí
Kênh
90Phut TV full HD ⇔ 32win
Thabet ⇔ BET88 ⇔ bk8

78win ⇔ https://69vn.living/
23win ⇔ ABC88 ⇔ rikvip ⇔ bj88
link xem truc tiep bong da xoilac tv ⇔ okvip
xem bóng đá cà khịa tv trực tuyến hôm nay
MB66 ⇔ 23WIN ⇔ FB88 ⇔ Link MB66
bongvip ⇔ daga88 ⇔ BK8
789BET ⇔ bj88.insure ⇔ 32 win ⇔ Daga
nhà cái OK9 ⇔ QQ88 ⇔ hi88 ⇔ b52 club
https://789betcom0.com/ ⇔ https://hi88.baby/
TK88 ⇔ f8bet ⇔ b52club
QQ88 ⇔ 32win ⇔ hi88 ⇔ go88
Bet88 ⇔ 78win ⇔ https://king88.movie/
Đăng nhập bk8 ⇔ 789Win ⇔ j88
HOBA ⇔ WW88 ⇔ bj88 ⇔ uu88
F168 ⇔ bsports ⇔ QQ88 ⇔ BET88
MB66 ⇔ hi88 ⇔ 789bet ⇔ net88
alo789 ⇔ F168 ⇔ soc88 ⇔ Kubet
https://hi88.gives/ ⇔ https://789club63.com/
23WIN ⇔ hi88 ⇔ https://fun88.social/
https://iwinpro.live/ ⇔ https://23win.kim/
https://qq88.fun/ ⇔ https://j88ss.com
SV388 ⇔ HB88 ⇔ keo nha cai
https://789winlem.com/ ⇔ https://uk88.rocks
32win ⇔ 69vn ⇔ UK88 ⇔ 98win
https://nau888.com ⇔ https://hello8880.net/
Debet ⇔ hi88 ⇔ hi88 ⇔ https://king88aff.com
NOHU ⇔ FB88 ⇔ 78win ⇔ kubet
F168 ⇔ https://dt68.cc/ ⇔ okking99
https://ww88.supply/ ⇔ https://f168.com.co/
Link vào NEW88 ⇔ https://789club24.com/
https://33win103.com/ ⇔ https://f168.group/
https://33win102.com/ ⇔ https://33win.clothing/
https://33win100.com/ ⇔ https://hi88.tours/
https://myeat.net/ ⇔ https://hi88.report/
https://58win1.info/ ⇔ https://hi88.garden/
https://fun88.place/  ⇔ https://hello880.net/
https://789club60.com/ ⇔ https://nau888.com/
https://f168.dad/ ⇔  ⇔ 99WIN
Vin777 ⇔ https://789club24.com/
33win ⇔ 8xbet ⇔ u888
PG88 ⇔ bet 88 ⇔ https://bj88com.feedback/
 ⇔ HB88 ⇔ 33win ⇔ HUBET
https://33win101.com/ ⇔ SHBET
https://nhacaiuytin.garden/ ⇔ https://98win.supply/
https://33winpro.me/ ⇔ https://23win.build
https://789win.navy/ ⇔ New88 ⇔ BJ88
SV388 ⇔ Link MBlive
https://ww88info.com/ ⇔ https://new88838.com/
https://nhacaiuytin88.me/ ⇔ https://hb88ai.com/
https://hb88top.com/ ⇔ https://8day111.com/
https://8day112.com/https://789win.voyage/
https://u888.prof/ ⇔ https://69win.me/
https://abc8.house/ ⇔ https://789p.partners/
Bạn đã không sử dụng Site, Bấm vào đây để duy trì trạng thái đăng nhập. Thời gian chờ: 60 giây