Giải Toán 8 sách Kết nối Tri Thức, bài 4: Phép nhân đa thức

Thứ ba - 10/10/2023 05:15
Giải Toán 8 sách Kết nối Tri Thức, bài 4: Phép nhân đa thức - Trang 19, 20, 21.

 1. Nhân đơn thức với đa thức

Luyện tập 1 trang 19: Nhân hai đơn thức:
a) 3x2 và 2x3;
b) –xy và 4z3;
c) 6xy3 và –0,5x2.
Giải:
a) 3x2 . 2x3 = (3. 2)(x2 . x3) = 6x5;
b) –xy . 4z3 = –4xyz3;
c) 6xy3 . (–0,5x2) = [6 . (–0,5)] (x . x2) y3 = –3x3y3

Hoạt động 1 trang 19: Hãy nhớ lại quy tắc nhân đơn thức với đa thức trong trường hợp chúng có một biến bằng cách thực hiện phép nhân (5x2) . (3x2 – x – 4).
Giải:
Ta có (5x2) . (3x2 – x – 4) = 5x2 . 3x2 – 5x2 . x – 5x2 . 4
= 15x4 – 5x3 – 20x2.

Hoạt động 2 trang 20: Bằng cách tương tự, hãy làm phép nhân (5x2y) . (3x2y – xy – 4y).
Giải:
Ta có (5x2y) . (3x2y – xy – 4y)
= 5x2y . 3x2y – 5x2y . xy – 5x2y . 4y
= (5.3)(x2.x2)(y.y) – 5(x2.x)(y.y) – (5.4)x2(y.y)
= 15x4y2 – 5x3y2 – 20x2y2.

Luyện tập 2 trang 20: Làm tính nhân:
a) (xy) . (x2 + xy – y2);
b) (xy + yz + zx) . (–xyz).
Giải:
a) (xy) . (x2 + xy – y2) = xy . x2 + xy . xy – xy . y2
= x3y + x2y2 – xy3.
b) (xy + yz + zx) . (–xyz) = xy . (–xyz) + yz . (–xyz) + zx . (–xyz)
= –x2y2z – xy2z2 – x2yz2.

Vận dụng trang 20: Rút gọn biểu thức x3(x + y) – x(x3 + y3).
Giải:
Ta có x3(x + y) – x(x3 + y3) = x3 . x + x3 . y – x . x3 – x . y3
= x4 + x3y – x4 – xy3 = x3y – xy3.
 

2. Nhân đa thức với đa thức

Hoạt động 3 trang 20: Hãy nhớ lại quy tắc nhân hai đa thức một biến bằng cách thực hiện phép nhân: (2x + 3) . (x2 – 5x + 4).
Giải:
Ta có (2x + 3) . (x2 – 5x + 4)
= 2x . x2 – 2x . 5x + 2x . 4 + 3 . x2 – 3 . 5x + 3 . 4
= 2x3 – 10x2 + 8x + 3x2 – 15x + 12
= 2x3 + (3x2 – 10x2) + (8x – 15x) + 12
= 2x3 – 7x2 – 7x + 12.

Hoạt động 4 trang 20: Bằng cách tương tự, hãy thử làm phép nhân  (2x + 3y) . (x2 – 5xy + 4y2).
Giải:
Ta có (2x + 3y) . (x2 – 5xy + 4y2)
= 2x . x2 – 2x . 5xy + 2x . 4y2 + 3y . x2 – 3y . 5xy + 3y . 4y2
= 2x3 – 10x2y + 8xy2 + 3x2y – 15xy2 + 12y3
= 2x3 + 12y3 + (3x2y – 10x2y) + (8xy2 – 15xy2)
= 2x3 + 12y3 – 7x2y – 7xy2.

Luyện tập 3 trang 21: Thực hiện phép nhân:
a) (2x + y)(4x2 – 2xy + y2);
b) (x2y2 – 3)(3 + x2y2).
Giải:
a) (2x + y)(4x2 – 2xy + y2)
= 2x . 4x2 – 2x . 2xy + 2x . y2 + y . 4x2 – y . 2xy + y . y2
= 8x3 – 4x2y + 2xy2 + 4x2y – 2xy2 + y3
= 8x3 + (4x2y – 4x2y) + (2xy2 – 2xy2) + y3
= 8x3 + y3.

b) (x2y2 – 3)(3 + x2y2) = x2y2 . 3 + x2y2 . x2y2 – 3 . 3 – 3 . x2y2
= 3x2y2 + x4y4 – 9 – 3x2y2 = x4y4 – 9.

Thử thách nhỏ trang 21: Xét biểu thức đại số với hai biến k và m sau: P = (2k – 3)(3m – 2) – (3k – 2)(2m – 3).
a) Rút gọn biểu thức P.
b) Chứng minh rằng tại mọi giá trị nguyên của k và m, giá trị của biểu thức P luôn là một số nguyên chia hết cho 5.

Giải:
a) P = (2k – 3)(3m – 2) – (3k – 2)(2m – 3)
= (6km – 9m – 4k + 6) – (6km – 4m – 9k + 6)
= 6km – 9m – 4k + 6 – 6km + 4m + 9k – 6
= (6km – 6km) + (4m – 9m) + (9k – 4k) + (6 – 6) = 5k – 5m.

b) Ta thấy P = 5k – 5m = 5(k – m)
Vì 5 ⋮ 5 nên 5(k – m) ⋮ 5
Do đó, tại mọi giá trị nguyên của k và m, giá trị của biểu thức P luôn là một số nguyên chia hết cho 5.
 

3. Giải Bài tập trang 21

Bài 1.24: Nhân hai đơn thức:
a) 5x2y và 2xy2;
b)  xy và 8x3y2;
c) 1,5xy2z3 và 2x3y2z.

Giải:
a) 5x2y . 2xy2 = (5. 2)(x2 . x)(y . y2) = 10x3y3;
b)  xy . 8x3y2 =   = 6x4y3;
c) 1,5xy2z3 . 2x3y2z = (1,5 . 2)(x . x3)(y2 . y2)(z . z3) = 3x4y4z4.

Bài 1.25: Tìm tích của đơn thức với đa thức:
giai toan 8 sach kntt bai 4 cau 1 25
Giải:
giai toan 8 sach kntt bai 4 cau 1 25a

Bài 1.26: Rút gọn biểu thức x(x2 – y) – x2(x + y) + xy(x – 1).
Giải:
Ta có x(x2 – y) – x2(x + y) + xy(x – 1)
= x . x2 – x . y – x2 . x – x2 . y + xy . x – xy . 1
= x3 – xy – x3 – x2y + x2y – xy
= (x3 – x3) + (x2y – x2y) – (xy + xy) = –2xy.

Bài 1.27: Làm tính nhân:
giai toan 8 sach kntt bai 4 cau 1 27
Giải:
giai toan 8 sach kntt bai 4 cau 1 27a

Bài 1.28: Rút gọn biểu thức sau để thấy rằng giá trị của nó không phụ thuộc vào giá trị của  biến: (x - 5)(2x + 3) - 2x(x - 3) + x + 7
Giải:
Ta có (x – 5)(2x + 3) – 2x(x – 3) + x + 7
= x . 2x + x . 3 – 5 . 2x – 5 . 3 – 2x . x + 2x . 3 + x + 7
= 2x2 + 3x – 10x – 15 – 2x2 + 6x + x + 7
= (2x2 – 2x2) + (3x – 10x + 6x + x) + (7 – 15)
= –8.
Vậy giá trị của biểu thức không phụ thuộc vào giá trị của biến x.

Bài 1.29: Chứng minh đẳng thức sau: (2x + y)(2x2 + xy – y2) = (2x – y)(2x2 + 3xy + y2).
Giải:
Ta có:
• (2x + y)(2x2 + xy – y2)
= 2x . 2x2 + 2x . xy – 2x . y2 + y . 2x2 + y . xy – y . y2
= 4x3 + 2x2y – 2xy2 + 2x2y + xy2 – y3
= 4x3 + (2x2y + 2x2y) + (xy2 – 2xy2) – y3
= 4x3 + 4x2y – xy2 – y3.
• (2x – y)(2x2 + 3xy + y2)
= 2x . 2x2 + 2x . 3xy + 2x . y2 – y . 2x2 – y . 3xy – y . y2
= 4x3 + 6x2y + 2xy2 – 2x2y – 3xy2 – y3
= 4x3 + (6x2y – 2x2y) + (2xy2 – 3xy2) – y3
= 4x3 + 4x2y – xy2 – y3.
Do đó (2x + y)(2x2 + xy – y2) = (2x – y)(2x2 + 3xy + y2) = 4x3 + 4x2y – xy2 – y3.
Vậy (2x + y)(2x2 + xy – y2) = (2x – y)(2x2 + 3xy + y2).

  Ý kiến bạn đọc

THÀNH VIÊN

Hãy đăng nhập thành viên để trải nghiệm đầy đủ các tiện ích trên site
Kênh Bóng đá trực tiếp hôm nay miễn phí
Kênh
90Phut TV full HD ⇔ 32win
Thabet ⇔ 79king ⇔ bk8 ⇔ bet88

78win ⇔ Kubet ⇔ 88CLB ⇔ shbet
789f ⇔ 99WIN ⇔ rikvip ⇔ 8x bet
kết quả bóng đá ⇔ keonhacai ⇔ okvip
b52club ⇔ Kkwin ⇔ ko66 ⇔ Link MB66
https://88betcom.pro/ ⇔ 8x bet ⇔ hi88
789BET ⇔ tylekeo ⇔ 32 win ⇔ Daga
j88 ⇔ 789win link ⇔ hi88 ⇔ b52 club
https://789betcom0.com/ ⇔ https://hi88.baby/
TK88 ⇔ rwin ⇔ luongsontv ⇔ SHBET
QQ88 ⇔  ⇔ 8kbet ⇔ go88
88bet ⇔ 78win ⇔ j88 ⇔ GK88 ⇔ 32win
Bet88 ⇔ 789Win ⇔ J88 ⇔ bj88
https://789bett1.blog/ ⇔ bj88 ⇔ uu88
F168 ⇔ bet88 ⇔ QQ88 ⇔ bk8 ⇔ bk8
MB66 ⇔ iwinclub ⇔ MB66 ⇔ net88
keonhacai ⇔ soc88 ⇔ https://j88t3.com/
https://hi88.gives/ ⇔ 23win ⇔ 98win
789F ⇔ hi88 ⇔ https://fun88.social/
https://iwinpro.live/ ⇔ https://hubet3d.com/
https://qq88.fun/ ⇔ 
rik vip ⇔ v9 bet ⇔ keo nha cai ⇔ u88
https://bshbet.com/ ⇔ https://uk88.rocks
32win ⇔ Vuabet88 ⇔ 88AA ⇔ 98win
https://luongson117.tv ⇔ https://hello8880.net/
u888 ⇔ betvisa ⇔ hi88 ⇔ https://king88aff.com
red88.com ⇔ choáng club ⇔ bong 88
https://u888lm.com/ ⇔ https://dt68.cc/ ⇔ bj88
https://ww88.supply/ ⇔ https://f168.com.co/
sin88.com ⇔ https://789club24.com/
https://33win103.com/ ⇔ https://f168.group/
https://33win102.com/ ⇔ https://abc8255.com/
https://33win100.com/ ⇔ https://hi88.tours/
https://myeat.net/ ⇔ https://hi88.report/
https://58win1.info/ ⇔ https://hi88.garden/
https://debetso.com/ ⇔ https://hello880.net/
https://789club60.com/ ⇔ 789WIN
https://f168.dad/ ⇔ dt68 ⇔ f168 ⇔
fun 88 ⇔ https://789club24.com/ ⇔ Kuwin
King 88 ⇔ 8xbet ⇔ 7m ⇔ New88
78 win ⇔ KUBET ⇔ 99OK ⇔ 68WIN
ww88 ⇔ 8 day ⇔ 33win ⇔ HUBET
https://33win101.com/ ⇔ SHBET ⇔ BJ88
five88.com ⇔ https://98win.supply/
https://33winpro.me/ ⇔ https://23win.build
https://kuwinvef.me/ ⇔ https://bongvip.space/
https://23win.men/ ⇔ nhà cái 8Kbet
https://nhacaiuytin88.me/ ⇔ https://hb88ai.com/
https://hb88top.com/ ⇔ https://8day111.com/
https://8day112.com/https://789win.voyage/
https://u888.prof/ ⇔ https://hubest.co/
https://goal123.directory/  ⇔ https://bk8co.net/
https://23wincom.info ⇔ https://j88com.limited
https://j88uk.com ⇔ https://f168.movie/
https://8kbetttt.com/ ⇔ https://f168.law/
https://88bett.vip/ ⇔ https://j88cem.com/
https://qq88pro.vip/ ⇔ https://ww88i.club/
New88 ⇔ https://8kbet25.com ⇔ hi88
kubet ⇔ https://luongsontv72.com/
https://qq88.gives/ ⇔ 789BET ⇔ ww88
https://88vvcom.net/ ⇔ 789BET
https://32win.vc/ ⇔ 78win ⇔ vegas79
bong88 ⇔ j88 ⇔ j88 ⇔ sunwin ⇔ sunwin
hitclub ⇔ hitclub ⇔ 888b ⇔ 8 day ⇔ go 88
https://f168.giving/ ⇔ s 666 ⇔ QQ88
hi88 ⇔ 79King ⇔ kubet ⇔ 8kbet
7MCN ⇔ Keonhacai55.ws ⇔ RR88
http://79king.ac/ ⇔ https://nhacaiuytin.garden/
https://xx88.ink/ ⇔ https://bk88vn.net/
https://23win.kim/ ⇔ https://69vn.co.in/
tỷ lệ kèo nhà cái hôm nay ⇔ King88 link mới
nhà cái UU88 ⇔ https://qq88.markets/
https://j88ss.com ⇔ https://qq88.studio/
888B ⇔ GK88 ⇔ nổ hũ đổi thưởng
https://mm88.blue/ ⇔ trực tiếp bóng đá
Hay 88 ⇔ https://rr882.net/ ⇔ King88
https://789winlem.com/ ⇔ https://cakhiatv88.net
Bạn đã không sử dụng Site, Bấm vào đây để duy trì trạng thái đăng nhập. Thời gian chờ: 60 giây