Giải Toán 8 sách Kết nối Tri Thức, bài: Luyện tập chung trang 40

Thứ năm - 12/10/2023 04:21
Giải Toán 8 sách Kết nối Tri Thức, bài: Luyện tập chung trang 40.
Bài 2.16: Tính nhanh giá trị biểu thức
x2 + x +  tại x = 99,75
Giải:
Ta có x2 + x +  = x2 + 2. x . + = = (x + 0,25)2
Thay x = 99,75 vào biểu thức (x + 0,25)2, ta được:
(99,75 + 0,25)2 = 1002 = 10 000.
Vậy tại x = 99,75 thì giá trị của biểu thức đã cho bằng 10 000.

Bài 2.17: Chứng minh đẳng thức (10a + 5)2 = 100a(a + 1) + 25. Từ đó em hãy nêu một quy tắc tính nhẩm bình phương của một số có tận cùng là 5.
Áp dụng: Tính 252; 352.
Giải:
Ta có (10a + 5)2 = (10a)2 + 2 . 10a . 5 + 52
= 100a2 + 100a + 25 = 100a(a + 1) + 25.
Từ đó ta rút ra quy tắc tính nhẩm bình phương của một số có tận cùng là 5 là:
Bình phương của một số tự nhiên có chữ số tận cùng là 5 bằng 100 lần tích của số tạo bởi các chữ số trước số tận cùng với số liền sau của số tạo bởi các chữ số trước số tận cùng rồi cộng với 25.
Áp dụng:
• 252 = (10 . 2 + 5)2 = 100 . 2 . (2 + 1) + 25 = 100 . 2 . 3 + 25
= 600 + 25 = 625;
• 352 = (10 . 3 + 5)2 = 100 . 3 . (3 + 1) + 25 = 100 . 3 . 4 + 25
= 1 200 + 25 = 1 225.

Bài 2.18: Tính nhanh giá trị của các biểu thức:
a) x3 + 3x2 + 3x + 1 tại x = 99;
b) x3 – 3x2y + 3xy2 – y3 tại x = 88 và y = –12.
Giải:
a) Ta có x3 + 3x2 + 3x + 1
= x3 + 3 . x2 . 1 + 3 . x . 12 + 13 = (x + 1)3.
Thay x = 99 vào biểu thức (x + 1)3, ta được:
(99 + 1)3 = 1003 = 1 000 000.
b) Ta có x3 – 3x2y + 3xy2 – y3 = (x – y)3.
Thay x = 88 và y = –12 vào biểu thức (x – y)3, ta được:
[88 – (–12)]3 = (88 + 12)3 = 1003 = 1 000 000.

Bài 2.19: Rút gọn các biểu thức:
a) (x – 2)3 + (x + 2)3 – 6x(x + 2)(x – 2);
b) (2x – y)3 + (2x + y)3.
Giải:
a) (x – 2)3 + (x + 2)3 – 6x(x + 2)(x – 2)
= [(x – 2) + (x + 2)] . [(x – 2)2 – (x – 2).(x + 2) + (x + 2)2] – 6x(x2 – 4)
= (x – 2 + x + 2).[x2 – 4x + 4 – (x2 – 4) + x2 + 4x + 4] – 6x(x2 – 4)
= 2x.(2x2 + 8 – x2 + 4) – 6x(x2 – 4)
= 2x(x2 + 12) – 6x(x2 – 4)
= 2x3 + 24x – 6x3 + 24x
= – 4x3 + 48x.
b) (2x – y)3 + (2x + y)3
= (2x)3 – 3 . (2x)2 . y + 3 . 2x . y2 – y3 + (2x)3 + 3 . (2x)2 . y + 3 . 2x . y2 + y3
= (2x)3 + 3 . 2x . y2 + (2x)3 + 3 . 2x . y2
= 8x3 + 6xy2 + 8x3 + 6xy2 = 16x3 + 12xy2.

Bài 2.20: Chứng minh rằng a3 + b3 = (a + b)3 – 3ab(a + b).
Áp dụng, tính a3 + b3 biết a + b = 4 và ab = 3.
Giải:
Ta có (a + b)3 = a3 + 3a2b + 3ab2 + b3
= a3 + 3ab(a + b) + b3
Do đó a3 + b3 = (a + b)3 – 3ab(a + b).
Áp dụng:
Với a + b = 4 và ab = 3, ta được:
a3 + b3 = (a + b)3 – 3ab(a + b)
= 43 – 3 . 3 . 4 = 64 – 36 = 28.

Bài 2.21: Bác Tùng gửi vào ngân hàng 200 triệu đồng theo thể thức lãi kép theo định kì với lãi suất x mỗi năm (tức là nếu đến kì hạn người gửi không rút lãi ra thì tiền lãi được tính vào vốn của kì kế tiếp). Biểu thức S = 200(1+x)3 (triệu đồng) là số tiền bác Tùng nhận được sau 3 năm.
a) Tính số tiền bác Tùng nhận được sau 3 năm khi lãi suất x = 5,5%
b) Khai triển S thành đa thức theo x và xác định bậc của đa thức.
Giải:
a) Số tiền bác Tùng nhận được sau 3 năm khi lãi suất x = 5,5% là:
200 (1 + 0,055)= 234,8483 (triệu đồng)

b) S = 200 (1+x)= 200 (1 + 3x + 3x+ x3)
=200 + 600x + 600x+ 200x3
Đa thức S bậc 3

  Ý kiến bạn đọc

THÀNH VIÊN

Hãy đăng nhập thành viên để trải nghiệm đầy đủ các tiện ích trên site
Kênh Bóng đá trực tiếp hôm nay miễn phí ⇔ fabet ⇔ Jun88 ⇔ shbet ⇔ Xoilac tv ⇔ Phát sóng Cakhia link trực tiếp ⇔ Kênh 90Phut TV full HD ⇔ https://keonhacaipro.vip/
https://ae888.finance/ ⇔ truc tiep bong da xoi lac full HD ⇔ xem bóng đá xôi lạc tv hôm nay ⇔ Xoilac ⇔
truc tiep bong da
xoilac tv mien phi ⇔ link truc tiep bong da xoilac tv mien phi ⇔ link trực tiếp bóng đá xôi lạc tv hôm nay ⇔ link xem truc tiep bong da xoilac tv
Xem
Mì Tôm TV trực tuyến tiếng Việt ⇔ Xem trực tiếp bóng đá VeboTV hôm nay ⇔ https://nhacaiuytin18.com/ ⇔ socolive truc tiep bong da hom nay mien phi ⇔ Tỷ lệ kèo bóng đá hôm nay ⇔ https://kubet.vision/ ⇔ KING33 ⇔ 789WIN
link trực tiếp bóng đá xoilactv tốc độ cao ⇔ xem bóng đá cà khịa tv trực tuyến hôm nay ⇔ https://www.tele789.com/
Bạn đã không sử dụng Site, Bấm vào đây để duy trì trạng thái đăng nhập. Thời gian chờ: 60 giây