Giải Sách bài tập Toán 6 bài 10: Tính chất chia hết của một tổng

Thứ hai - 07/10/2019 04:12
Hướng dẫn giải chi tiết: Sách bài tập Toán 6 - Bài 10: Tính chất chia hết của một tổng
114. Áp dụng tính chất chia hết, xét xem mỗi tổng (hiệu) sau có chia hết cho 6 không?
a. 42 + 54
b. 600 - 14
c. 120 + 48 + 20
d. 60 + 15 + 3
Giải:
a. Vì 42 ⁞ 6 và 54 ⁞ nên (42 + 54) ⁞ 6
b. Vì 600 ⁞ 6 nhưng 14 không chia hết cho 6 nên (600 - 14) không chia hết cho 6
c. Vì 120 ⁞ 6, 48 ⁞ 6 nhưng 20 không chia hết cho 6 nên (120 + 48 + 20) không chia hết cho 6
d. Vì 60 ⁞ 6 và 15 + 3 = 18 ⁞ 6 nên (60 + 15 + 3) ⁞ 6

115. Cho tổng A = 12 + 15 + 21 + x, với x  N. Tìm điều kiện của x để A chia hết cho 3, để A không chia hết cho 3.
Giải:
Ta có: 12 ⁞ 3; 15 ⁞ 3; 21 ⁞ 3
Suy ra: A = (12 + 15 + 21 + x) ⁞ 3 khi x ⁞ 3
A = (12 + 15 + 21 + x) không chia hết cho 3 khi x không chia hết cho 3.

116. Khi chia số tự nhiên a cho 24, ta được số dư là 10. Hỏi số a có chia hết cho 2 không? Có chia hết cho 4 không?
Giải:
Ta có: a = 24k + 10 (k N)
Vì 24 ⁞ 2 và 10 ⁞ 2 nên (24k + 10) ⁞ 2
Vì 24 ⁞ 4 và 10  4 nên (24k + 10)  4

117. Điền dấu “x” vào ô thích hợp:
Câu Đúng Sai
Nếu mỗi số hạng của tổng không chia hết cho 4 thì tổng không chia hết cho 4    
Nếu tổng của hai số chia hết cho 3, một trong hai số chia hết cho 3 thì số còn lại chia hết cho 3    

Giải:
Câu Đúng Sai
Nếu mỗi số hạng của tổng không chia hết cho 4 thì tổng không chia hết cho 4   x
Nếu tổng của hai số chia hết cho 3, một trong hai số chia hết cho 3 thì số còn lại chia hết cho 3 x  

118. Chứng tỏ rằng:
a. Trong hai số tự nhiên liên tiếp, có một số chia hết cho 2.
b. Trong ba số tự nhiên liên tiếp, có một số chia hết cho 3.
Giải:
a. Gọi hai số tự nhiên liên tiếp là a và a + 1
Nếu a chia hết cho 2 thì bài toán được chứng minh.
Nếu a không chia hết cho 2 thì a = 2k + 1 (k N)
Suy ra: a + 1 = 2k + 1 + 1
Ta có: 2k ⁞ 2; 1 + 1 = 2 ⁞ 2
Suy ra: (2k + 1 + 1) ⁞ 2 hay (a + 1) ⁞ 2
Vậy trong hai số tự nhiên liên tiếp, có một số chia hết cho 2.
b. Gọi ba số tự nhiên liên tiếp là a, a + 1 và a + 2
Nếu a chia hết cho 3 thì bài toán được chứng minh.
Nếu a không chia hết cho 3 thì a = 3k + 1 hoặc a = 3k + 2 (k N)
Nếu a = 3k + 1 thì a + 2 = 3k + l+ 2 = 3k + 3 ⁞ 3
Nếu a = 3k + 2 thì a + l = 3k + 2 + l = 3k + 3 ⁞ 3
Vậy trong ba số tự nhiên liên tiếp, có một số chia hết cho 3.

119. Chứng tỏ rằng:
a. Tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3.
b. Tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4.
Giải
a. Gọi ba số tự nhiên liên tiếp là a, a + 1 và a + 2
Ta có: a + (a + 1) + (a + 2) = (a + a + a) + (1 + 2) = 3a + 3
Vì 3 ⁞ 3 nên 3a ⁞ 3, suy ra (3a + 3) ⁞ 3
Vậy tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3.
b. Gọi bốn số tự nhiên liên tiếp là a, a + 1, a + 2 và a + 3
Ta có: a + (a + 1) + (a + 2) + (a + 3)
= (a + a + a + a) + (1 + 2 + 3) = 4a + 6
Vì 4 ⁞ 4 nên 4a ⁞ 4 nhưng 6  4, suy ra (4a + 6) 4
Vậy [a + (a + 1) + (a + 2) + (a + 3)]  4

120. Chứng tỏ rằng số có dạng  bao giờ cũng chia hết cho 7 (chẳng hạn: 333333 ⁞ 7).
Giải:
Ta có:   = 111111.a = 3.7.11.13.37.a
Vì 3.7.11.13.37.a : 7 nên 111111.a ⁞ 7.
Vậy số có dạng   bao giờ cũng chia hết cho 7.

121. Chứng tỏ rằng số có dạng  bao giờ cũng chia hết cho 11 (chẳng hạn: 328328 ⁞ 11).
Giải:
Ta có:  = 1001.  = 7.11.13.
Vì 7.11.13. ⁞ 11 nên 1001. ⁞ 11
Vậy số có dạng  bao giờ cũng chia hết cho 11.

122. Chứng tỏ rằng lấy một số có hai chữ số, cộng với số gồm hai chữ số ấy viết theo thứ tự ngược lại, ta luôn luôn được một số chia hết cho 11 (chẳng hạn 37 + 73 = 110, chia hết cho 11).
Giải
Gọi số tự nhiên có hai chữ số là  (a 0)
Số viết theo thứ tự ngược lại của  là
Số ab viết dưới dạng tổng các hàng đơn vị là 10a + b
Số ba viết dưới dạng tổng các hàng đơn vị là 10b + a
Ta có:  +  = (10a + b) + (10b + a) = 11a + 11b = 11.(a + b)
Vì 11.(a + b) : 11 nên ab + ba luôn chia hết cho 11.
Bản quyền bài viết thuộc về Sachgiai.com. Ghi nguồn Sách giải.com khi đăng lại bài viết này.

  Ý kiến bạn đọc

THÀNH VIÊN

Hãy đăng nhập thành viên để trải nghiệm đầy đủ các tiện ích trên site
Kênh Bóng đá trực tiếp hôm nay miễn phí
Kênh
90Phut TV full HD
leo88 ⇔ hb 88 ⇔ go88 ⇔ u888

https://go88live.net/ ⇔ SHBET
đá gà net88 ⇔ U888 ⇔ BET88 ⇔ SHBET
link xem truc tiep bong da xoilac tv ⇔ https://104.248.99.177/
xem bóng đá cà khịa tv trực tuyến hôm nay
78win ⇔ ABC8 ⇔ hi88 ⇔ qq88
33 win ⇔ 789BET ⇔ bk8 đăng nhập
789BET ⇔ BJ88 ⇔ 789bet ⇔ hitclub
Kubet ⇔ BJ88 ⇔ QQ88 ⇔ qq 88
https://789betcom0.com/ ⇔ https://hi88.baby/
OK365 ⇔ https://98win.care/ ⇔ sunwin
QQ88 ⇔ leo88 login ⇔ https://88clbu.net/
789club ⇔ F168 ⇔ 8kbet ⇔ OKVIP
hi88 ⇔ BJ88 ⇔ 123b ⇔ sunwin
https://789club64.com/ ⇔ https://23win.build/
NOHU90 ⇔ 18win ⇔ https://fun88.social/
J88 ⇔ 8kbet ⇔ 33win ⇔ QQ88
789 club ⇔ hi88 ⇔ THABET
https://go88so.net/
8kbet ⇔ https://789club63.com/
https://king88aff.com/ ⇔ hi88 ⇔ 33WIN
https://0fun88.com/ ⇔ New88
https://qq88.fun/ ⇔ http://mu88.wine/
fun88 ⇔ 500ae ⇔ nhà cái net88
8kbet ⇔ s666 ⇔ https://kubetvn88.com/
https://8kbetwin.com/ ⇔ https://uk88.rocks
https://8xbet68.net/ ⇔ https://789bet188.com/
https://shbetb0.com/ ⇔ https://hello8880.net/
sunwin ⇔ ABC88 ⇔ hi88 ⇔ qh88 com
jun 88 ⇔ f168 ⇔ https://qq88.marketing/
F168 ⇔ new88 ⇔ LUCK8 ⇔ 78win
https://mb66az.com/ ⇔ https://789bet.green/
Link vào NEW88 ⇔ https://789club24.com/
https://33win103.com/ ⇔ Rikvip
https://888bz.vip ⇔ https://new88.today/
https://33win102.com/ ⇔ https://500ae.is/
https://33win100.com/ ⇔ https://ok365com.ink/
https://betvisa8.net/ ⇔ https://hi88.report/
https://hi88.tours/ ⇔ https://hubetu.com/
U888 ⇔ https://hi88.garden/
https://789bet188.us/ ⇔ https://hello880.net/
https://789club60.com/ ⇔ https://betvisacom2.com/
shbet ⇔ cwin ⇔ 68gamebai
qh88 đăng nhập ⇔ https://789club24.com/
SHBET ⇔ 33win ⇔ 8xbet com
sunwin ⇔ KUBET ⇔ BAY789
https://go88club13.com/https://789bet188.today/
https://bk8link2.com/ ⇔ https://bk8link3.com/
https://789bet188.xyz/ ⇔ https://jun88pro.club/
https://33win101.com/ ⇔ SHBET
https://u888ny.com/ ⇔ https://hi88.gives/
https://jofinch.london/ ⇔ J88
https://win55.sh/ ⇔ https://789bet188.pro/
https://king88.select/ ⇔ https://789bet188.cloud/
https://ww88.supply/ ⇔ https://nohu90m.net/
https://f8betlv.com/
https://abc8.education/
Nhà cái SHBET
https://789bet188.info/ ⇔ https://789bet188.live/
https://789bet188.online/ ⇔ https://789bet188.co/
https://789bet188.tech/ ⇔ https://789bet188.biz/
https://789bet188.club/ ⇔ https://789bet188.vip/
https://789bet188.site/ ⇔ https://789bet.asia/
https://new8818.net/ ⇔ https://new8818.org/
https://new8818.me/ ⇔ https://new8818.xyz/
https://new8818.pro/ ⇔ https://new8818.cloud/
https://new8818.info/ ⇔ https://new8818.us/
https://new8818.live/ ⇔ https://new8818.online/
https://new8818.co/ ⇔ https://new8818.today/
https://new8818.biz/ ⇔ https://new8818.club/
https://new8818.vip/ ⇔ https://new8818.site/
https://new8818.ink/ ⇔ https://ahihi88.host/
https://hi8818.xyz/ ⇔ https://hi8818.us/
https://hi8818.blog/ ⇔ https://hi8818.online/
https://hi8818.site/ ⇔ https://hi8818.ink/
https://hi8818.cloud/ ⇔ https://hi8818.me/
https://shbet188.org/ ⇔ https://shbet188.pro/
https://shbet188.cloud/ ⇔ https://shbet188.ink/
https://shbet288.store/ ⇔ https://shbet288.today/
https://shbet288.tech/ ⇔ https://shbet188.xyz/
https://shbet188.us/ ⇔ https://shbet188.shop/
https://kubet288.com/ ⇔ https://kubet188.mobi/
https://kubet188.dev/ ⇔ https://kubet288.xyz/
https://kubet288.pro/ ⇔ https://kubet288.cloud/
https://jun8818.org/ ⇔ https://jun8818.net/
https://jun8818.me/ ⇔ https://jun8818.xyz/
https://jun8818.pro/ ⇔ https://jun8818.cloud/
https://jun8818.info/ ⇔ https://jun8818.us/
https://jun8818.live/ ⇔ https://jun8818.shop/
https://8kbet25.com/ ⇔ https://789win.navy/
https://loteriadeboyaca.com.co/
https://f8bet288.com/ ⇔ https://f8bet288.org/
https://f8bet288.net/ ⇔ https://f8bet288.me/
https://f8bet288.xyz/ ⇔ https://f8bet288.pro/
https://f8bet288.cloud/ ⇔ https://f8bet288.info/
https://f8bet288.us/ ⇔ https://f8bet288.live/
https://f8bet288.online/ ⇔ https://f8bet288.co/
https://f8bet288.today/ ⇔ https://f8bet288.biz/
Bạn đã không sử dụng Site, Bấm vào đây để duy trì trạng thái đăng nhập. Thời gian chờ: 60 giây